量子世界究竟有多神奇

  什么是量子?量子不是一种粒子 

  什么是“量子”?它和“原子”、“电子”、“中子”这些客观存在的粒子一样也是某一种物质实体吗?答案是否定的。“量子”不是一种粒子,在物理学中提到“量子”时,我们实际上指的是微观世界的一种行为倾向:物质或者说粒子的能量和其他一些性质(统称为可观测物理量)都倾向于不连续地变化。 例如,我们说一个“光量子”,是因为一个光量子的能量是光能量变化的最小单位,光的能量是以光量子的能量为单位一份一份地变化的。其他的粒子情况也是类似的,例如,在没有被电离的原子中,绕核运动的电子的能量是“量子化”的,也就是说电子的能量只能取特定的离散的值。只有这样,原子才能稳定存在,我们才能解释原子辐射的光谱。 

  量子物理学告诉我们,电子绕原子核运动时也只能处在一些特定的运动模式上,在这些模式上,电子的角动量分别具有特定的数值,介于这些模式之间的运动方式是极不稳定的。即使电子暂时以其他的方式绕核运动,很快就必须回到特定运动模式上来。实际上在量子物理学中,所有的物理量的值,都可能必须不连续地、离散地变化。这样的观点和经典物理学的观点是截然不同的,在经典物理学里所有的物理量都是连续变化的。 

  上世纪初,物理学家普朗克最早猜测到微观粒子的能量可能是不连续的。但要坚持这个观点,就意味着背叛经典物理学。保守的普朗克最终放弃了这个观点,对于他个人这是一件极为遗憾的事。然而,大量的实验事实迫使物理学界迅速地接受这样的观点,将其发展起来,并结合其他一些公设如“量子态叠加原理”、“概率性测量原理”等,建立了如今的量子物理科学。 

  量子纠缠:突破传统技术极限的神奇力量 

  两个“量子骰子”是互相纠缠的,当你把其中一个掷出六点时,另一个也必定是六点。量子纠缠是另一种违反经典世界常识的量子现象。考虑两个粒子组成的量子体系,它的量子叠加态会有什么特殊之处吗? 

  量子力学预言说,可以制备一种两粒子共同的量子态,其中每个粒子状态之间的关联关系不能被经典的解释;这称为量子关联,这样的态称为两粒子量子纠缠态。 

  爱因斯坦的“相对论”指出:相互作用的传播速度是有限的,不大于光速。可是,如果将处于纠缠态中的两个粒子分开很远,当我们完成对一个粒子的状态进行测量时,任何相互作用都来不及传递到另一个粒子上。按道理讲,另一个粒子因为没有受到扰动,这时状态不应该改变。但是这时另一个粒子的状态受到关联关系的制约,已经发生了变化。这一现象被爱因斯坦称为“诡异的互动性”。它似乎违反了爱因斯坦的“定域因果论”,因此量子纠缠态的关联被称为非定域的量子关联。 

  量子纠缠指的就是两个或多个量子系统之间的非定域的量子关联。科学家认为,这是一种“神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。实际上,科学家们发现量子纠缠还有很多奇妙的应用,可以在许多领域中突破传统技术的极限。 

  量子技术大家族 

  现在,量子技术已经成为一个新兴的、快速发展中的技术领域。这其中,量子通信、量子计算、量子成像、量子测度学和量子生物学是目前取得进展较大的几个方向。 

  量子通信 

  广义地说,量子通信是指把量子态从一个地方传送到另一个地方,它的内容包含量子隐形传态,量子纠缠交换和量子密钥分配。狭义地说,我们谈到量子通信时,实际上只是指量子密钥分配或者基于量子密钥分配的密码通信。   

  量子计算 

  量子计算是量子物理学向我们展示的又一种强大的能力。量子计算的概念最先由Richard Feynman提出,源自于对真实物理系统的模拟。 

  Feynman提出如果用量子系统所构成的计算机来模拟量子现象则运算时间可大幅度减少。从此,量子计算机的概念诞生。 

  量子成像 

  量子成像是从利用量子纠缠成像开始逐渐发展起来的一种新的成像技术。量子成像利用光学成像和量子信息进行并行处理,与经典成像相比,两者获取物体信息的物理机制、理论模型、具体光学系统以及成像效果均不相同。 

  量子成像中的一种比较奇妙的现象称为鬼成像或者关联成像、符合成像。与经典光学成像只能在同一光路得到该物体的像不同,鬼成像可以在另一条并未放置物体的光路上再现该物体的空间分布信息。 

  量子测度学 

  一个物理量的测量准确度最终取决于其测量标准的准确度。时间频率利用量子频标作为测量标准,而量子频标则是利用原子不同能级之间跃迁所发射或吸收的电磁波频率来作为标准,由于微观量子态的跃迁具有稳定不变的周期,从而使得时间频率具有较高的准确度与稳定度。量子频标或者叫原子钟,是当代第一个基于微观量子力学原理做成的计量标准。  

  时间精确测量与国防、科技、民生等方面息息相关。将长度、温度、电压等物理量转换成频率量,即时间的倒数来进行测量,这样就可以提高其它物理量的精确度。理论上所有物理量都能通过时间频率来进行测量,所有计量单位都可以通过时间频率来定义和导出,从而使所有物理量都统一于时间频率,这会大大提高各种物理量的测量精确度。 

  由于时间频率基准具有最高的准确度,对基准影响因素的研究往往涉及物理学的前沿,因为测量精度的细微提高,常预示着新的物理发现,能推动整个物理学的前进,物理学史上有11个诺贝尔物理学奖都与建立时间频率标准有关。 

  时间频率信号涉及国家安全命脉,可以利用局部停播、伪造误码和加载噪声等手段迷惑与打击敌人,实现战略和战术目标,还可以通过发播不同信息码以限制民用用户得到高精度的时间频率信号。因此,精密的时间信号的使用绝不止是一般的计量问题,而是密切关系到国家机密、国防事务等方面。 

  从全球定位系统(GPS)到国际守时标准,以量子技术为基础的光钟对时间频率的测量能力目前已初现端倪,至于其未来的全部应用也许目前我们还无法全部预计。但是科学的发展一再表明时间频率测量精度每提高一个量级,人们对世界的认识就深入一步。 

  量子生物学 

  量子生物学是利用量子力学的概念、原理及方法,从分子、原子及电子水平研究生命物质和生命过程的学科。 

  量子力学的创立和发展,吸引着众多物理学家和化学家,促使他们用量子力学的方法分析生物学意义上的电子结构,并把结果和生物学活性联系起来。例如,早在1938年,R.F.施密特就已开始对致癌芳香烃类化合物的研究,试图说明致癌活性与分子的电子结构之间的关系,随后经过普尔曼等人的工作,现已成为量子生物学中的重要组成部分。 

  量子生物学是分子生物学深入发展的必然趋势,是量子力学与分子生物学发展到一定阶段之后相互结合的产物。 

  量子生物学的研究方法基本上就是用量子力学的方法来处理一个微观体系的全部计算过程,并利用由此得出的各种参量,说明所研究对象的结构、能量状态及变化,进而解释其生物学活性及生命过程。 

  只要生物分子本身的化学结构或各级结构已经清楚,就可以研究和这种分子相关联的生物学活性的本质,或者它们之间的相互作用。因此量子生物学所研究的问题实际上包含分子生物学的全部内容。例如重要生物大分子的物理性质、各级结构与功能;酶的结构与催化机制;致癌物质的作用机制;药物作用机制等。可以把量子生物学的内容归纳为以下四个方面:分子间相互作用力的研究、生物分子的电子结构与反应活性的研究、生物大分子的构象与功能的研究和特异作用与识别机制的研究。 

  量子生物学还是一门十分年轻的学科,国际量子生物学会(简称ISQB)于1970年成立。量子生物学的发展不仅需要计算方法的改进,还需要与实验结果密切配合。到目前为止,量子生物学还只限于对较小分子的研究,特别是药物的作用,对于复杂生物学问题的探讨,还有待深入。 

  本文选自中国科普博览,略有删节。 


附件下载: